
Distributed Matlab v0.6

Authors: Dan Hill (dhill@biomail.ucsd.edu), Samar Mehta (samar@cs.stanford.edu); 10/11/05

Distibuted Matlab helps to run computationally-intensive Matlab programs by utilizing the
resources of a local network. To use Distributed Matlab, you will need a secure private network
of computers running Windows 2000/XP where each computer is capable of running Matlab 6.5
or later. Earlier versions of Windows or Matlab may work but have not been tested.

The functionality of this software is similar in some ways to The Mathworks’ Distributed
Computing Toolbox. This software was, however, developed previous to and independently of
the release of the commercial toolbox.

Typesetting note: All italicized words are defined in the glossary as well as in the text of the manual. These words
appear in bold face the first time they are used in the text. Computer commands, computer names and directory
names appear in a fixed width font.

Introduction
Distributed Matlab is intended for a small, private laboratory or office network with computers
that are typically idle at night or on weekends. For certain computation-intensive Matlab
programs, Distributed Matlab can utilize otherwise unused computer hours to increase the rate of
processing. The main requirement for a problem to benefit from this approach is that it must be
easily broken into pieces that do not depend on one another; this is typically the case in problems
where the same Matlab code is run with many different inputs. For example, a Matlab script that
repeats the same analysis on several data files or a function that repeats a simulation for many
different parameters would both be candidates.

In this document, the Matlab code that will be run repeatedly is referred to as the user code and
the files that contain the data needed to run one piece of the original problem are called an input
data set (e.g., in the examples above, a single data file or a file listing one set of parameters
would be an input data set). The result of running the user code on an input data set produces a
corresponding output data set.

A Distributed Matlab session proceeds as follows. One computer serves as the manager and
runs the Distributed Matlab GUI. Other computers on the same local Windows network can be
designated workstations. The manager computer copies the user code and one input data set to
each available workstation. It then starts Matlab on each workstation and runs the user code.
When the user code on a workstation finishes, the manager retrieves the resulting output data set
and sends a new input data set to the workstation. This process continues until all input data sets
have been run.

Setting up a Network
To run Distributed Matlab, the local network must be configured to allow the manager to copy
files to and run programs on each workstation and a Matlab path must be set for all workstation
computers. These steps must be completed the first time Distributed Matlab is run on a
particular network.

Note that Distributed Matlab operations are not secure. Passwords are unencrypted and
malicious changes to the Distributed Matlab code could damage computers on the network. This
program should thus only be run when the local network is known to be safe from security
threats and the Distributed Matlab program has been obtained directly from the authors.

Workstations
Network information is provided in a network file that has one line for each computer that can be
used as a workstation. This file can be edited by pressing the Network File button in the
Distributed Matlab GUI. Each line should contain the following information separated by tabs:

1. Computer Name Windows computer name as visible on the network
2. Username Valid Windows user on the workstation
3. Password Windows password for the above username
4. Scratch Directory Share name of a directory on the workstation that can be used as a

temporary directory. This directory must be accessible from the
manager computer. If there are any spaces in the directory name,
the entire name must be enclosed in double quotes.

As an example, suppose two workstations named blue and green are available. The computer
named blue has a shared drive with share name C and a user blueuser with password blue1.
The computer named green has a shared folder with share name public stuff. However,
the main user of green does not mind if the machine is used as a workstation, but does not want
to share her user name and password. The first step in this case would be to create a new user on
green for Distributed Matlab; for example, user dmatlab with password matlab1. The
network file should then read:

 blue blueuser blue1 c\scratch
 green dmatlab matlab1 “public stuff\scratch”

To check if the settings for green are correct, run the following line from a command prompt on
the manager computer*:

 net use “\\green\public matlab1” /USER:dmatlab

*Each Scratch Directory must be shared so that the listed user has write permission to that directory, and the user
must have sufficient security rights to remotely execute applications. If the network is completely secure, the
simplest solution is to make the user listed in the network file a member of the Administrator group. Less risky
options are possible, but the process of making these security settings is not described here.

Matlab Path
Distributed Matlab starts Matlab and executes the source code functions on each of the
workstations. To ensure that the code will work correctly on all of these computers, the Matlab
version and path should be compatible on each workstation.

The Matlab version may be an issue when workstation computers have different versions of
Matlab installed, since the user code will run on different Matlab versions. For any single
computer with multiple versions of Matlab, type Matlab at a command prompt on that computer
(while logged on as the user from the network file) to determine the default version, which is
what Distributed Matlab will use. Be sure to test the user code on any version of Matlab that
may result from running this default version on all computers in the network file. In particular, if
the manager computer is running an earlier version of Matlab than any of the workstations, the
manager will not be able read .mat files generated by the later version of Matlab unless care is
taken to enforce compatibility (for example, see the example in Appendix B).

The Matlab path must also be set to ensure that the user code sees the same Matlab environment
on each workstation. This is accomplished by a path file that explicitly lists all Matlab
directories that will be accessible by the user code; by default, this file places all subdirectories
in the MATLABROOT\toolbox directory on the Matlab path. This default behavior should be
acceptable in most circumstances, but the path file can be edited when necessary by pressing the
Path File button in the Distributed Matlab GUI.

Parellelizing a Matlab Program
To prepare a Matlab program to be run by Distributed Matlab, the program is split conceptually
into 3 parts: the code common to all of the computation (user code), the data needed to specify a
particular piece of the computation (input data set) and the results desired from running user
code on a particular input data set (output data set). All of this information is gathered in a
directory called the Project Directory and must be organized as follows:

1. The user code is collected in a subdirectory called source.
2. Each input data set is collected in a subdirectory whose name starts with input. A

simple approach is to use {input1, input2, … , inputN }.
3. The directories for the output data sets will be created by Distributed Matlab with names

matching the corresponding input data set (e.g., for the numbered input example above,
the output data set directories will be {output1, output2, … , outputN }. After
running Distributed Matlab, these output directories will be collected in the Session
Directory (defined below).

When the user code is copied to a workstation, an accompanying input data set will be copied to
a subdirectory named input. Any results which are to be saved as part of the output data set
must be saved in the subdirectory named output before the user code completes. Thus, for an
existing Matlab program, the following steps are needed:

1. Identify the Matlab code common to all computations. Save all of these files in a
directory called source.

2. Break the program into pieces that can be run in parallel. Create one directory for each of
these pieces and put any files necessary to run each piece into the corresponding
directory. Name these directories in an intuitive way.

3. Modify the code for the program so that it processes only one of the pieces and uses
directories named input and output. For example, if the original code loads a series of
files in a for loop, remove the for loop and load only one file from a subdirectory called
input. At the end of the code, save any results into the output subdirectory.

4. To recreate the results of the original program, it may be necessary to write a script to
collect the results from a group of output directories (named to match the input
directories from (1) above). **This script can assume that the variable session_name
exists and contains the name of the session directory. **

This organization is depicted graphically in Appendix A and an example is given in Appendix B.

In dividing up a problem, it is important to keep in mind the overhead incurred by Distributed
Matlab. The average overhead time, S, can be estimated from the time needed to copy one input
data set and one output data set over the local network plus a fixed cost of ~30 seconds for
starting and stopping Matlab. As a rule of thumb, for a network with N workstations and a
program with N input data sets that takes T seconds on a single computer, Distributed Matlab
will provide an advantage when S is less than (N-1)/N * T/N. For example, consider a program
that takes 60 minutes to run on a single computer. If the network has 10 workstations and the
program is divided into 10 jobs, Distributed Matlab does not provide an advantage unless S is at
least less than ~5 ½ minutes. Note that it is best to choose the number of input data sets N to be
equal to the number of workstations when possible, to minimize overhead.

Running a Distributed Matlab Session
To run Distributed Matlab on a Matlab program that has been prepared as described above,
identify one computer as a manager. If each input data set contains a large amount of data and
all of this data is currently on one computer, it is most efficient to use that computer as the
manager. Otherwise, the identity of the manager computer is unimportant – it is even possible
to use a single computer both as a manager and as a workstation, if that computer has sufficient
resources to run two simultaneous instances of Matlab.

Start Matlab on the manager computer. Confirm that the folder is on the Matlab path. Type
distributed_matlab to start the GUI. The GUI asks for the following information before
starting a session (items 1-4 are required):

1. Start Time: The time at which the session should be started: DD-Mon-YYYY, HH:MM:SS
2. Termination Time: The time at which the session should be stopped: DD-Mon-YYYY, HH:MM:SS
3. Project Directory: The directory containing the source and input directories described above
4. Remote Command: The user code Matlab command that should be run on each workstation
5. Initialize Command: A Matlab command that should be run on the manager before starting
6. Wrap-up Command: A Matlab command that should be run on the manager after finishing

Once this information has been entered, press the Start button to run the session. The time at
which the start button is pressed and the name of the manager computer are used to create a
session name (e.g., HOST_blue__START_20050926T190000) which is displayed on the GUI.
The start time is in the date/time ISO 8601 format yyyymmddThhmmss). A directory with the
same name will be created in the Project Directory; this is called the Session Directory.

After creating the Session Directory, the GUI will go through the following steps (see Appendix
A for a diagram):

1. Wait until the system clock on the manager computer reaches Start Time.
2. Create a list of workstations from the file Network File.
3. Create a list of input data sets from all subdirectories of Project Directory whose names

start with input.
4. The Initialize Command (if any) is run on the manager.

For each workstation, steps 5-8 are repeated.

5. The source directory from Project Directory is copied to a scratch directory on the
workstation. Subdirectories named input and output are created in this directory.

6. A new input data set is chosen and the corresponding input directory is copied to the
input directory on the workstation.

7. Matlab is started on the workstation in the scratch directory created in step 4. An ‘opt-
out’ window appears on the workstation’s screen to allow a user to force Distributed
Matlab to stop using that workstation.

8. Remote Command is run on the workstation as if it were typed at the Matlab prompt.

9. When all workstations have been assigned work, the manager checks at regular intervals
to determine if any workstation has completed its processing. When a workstation is
done, the manager copies the output subdirectory from the workstation to a new
subdirectory (in the Session Directory) whose name starts with output. Steps 5-8 are
then repeated to assign a new job to the workstation.

10. This cycle stops when either (1) all input data sets have been attempted, (2) the
Termination Time is reached, or (3) the Stop button is pressed in the Distributed Matlab
GUI. If any workstations are still busy when (2) or (3) occurs, these workstations are
interrupted.

11. The Wrap-up Command (if any) is run on the manager.

Note that each workstation that starts an input data set can terminate in one of three ways: (1)
forced to quit by Distributed Matlab, (2) Matlab error encountered in user code, or (3) successful
termination of user code. In all cases, an output subdirectory is created in the Sesssion
Directory. This subdirectory will contain all files that were in the workstation’s output
directory when the workstation terminated.

Information about a Distributed Matlab Session
Information about the progress of a Distributed Matlab session can be useful both while the
session is running and after it completes. Uses include checking on progress, determining if any
input data sets did not complete successfully, and trouble-shooting workstations or input data
sets that cause errors. This information is available in the following forms: The manager
display, manager and workstation log files, and a Matlab log data structure.

Manager display: While a Distributed Matlab session is running, a series of messages will be
printed in the command window of the Matlab instance that is running Distributed Matlab.
These messages include notification of workstation log-ons, creation and assignment of input
data sets, workstation termination messages, etc. When the session completes, a summary of the
entire session is printed in this display.

Manager log files: All messages in the manager display are saved in a manager log. While a
Distributed Matlab session is running, pressing the Log File button will open a text file with
the same messages displayed in the manager display. After a session has completed, all of these
messages are saved to a file, in the Project Directory, named after the session name. This file
can be opened with any text editor to review the progress of a session.

Matlab Log data structure: The information in the manager log file, along with several internal
Distributed Matlab parameters, is saved as a Matlab data structure in a file (located in the Project
Directory) named after the session name and ending in .mat. This is mainly used for trouble-
shooting purposes, and this file can be safely deleted after a session has ended.

Workstation log files: If a workstation encounters an error while processing an input data set,
messages about the error may be recoverable from the log file for that input data set. While an
input data set is being processed, the Busy Station, Busy Job, and Get Remote Log
controls in the GUI can be used to view a workstation log file. After an input data set has
completed, a corresponding workstation log file, named log.txt, is saved in the appropriate
output directory. Note that when an error occurs on a particular input data set, that input data
set is tried again (up to three times). The workstation log files for both failed and successful
attempts are saved in the Session Directory to aid in determining the cause of an error.

Appendix A: Organization Diagram

 blueblblue (workstation)(k i)(workstation) blue (workstation)

\\c\scratch\
 (shared scratch directory)

colorsl (manager)()colors (manager)

 greengreen (workstation)(k i)(workstation) green (workstation)

somework (project directory)

HOST_manager__20050926T190000 (session directory)

source

main.m (user code)

more.m (user code) �

input1

data.mat (input data set)

params.txt (input data set)�

input2

data.mat (input data set)

params.txt (input data set)�

output1

results.mat (output data set)

log.txt (workstation log)

�

output2

results.mat (output data set)

log.txt (workstation log)

�

(1) source and input1 directories are copied
 from colors to blue

(2) Matlab runs command main.m on blue

(3) output directory on blue is copied
 to output1 on colors

While blue is working, the same process
 assigns input2 to green

HOST_manager__2005...

\\public stuff\scratch\
 (shared scratch directory)

main.m
more.m

input

data.m
params.m

output

results.mat

HOST_manager__2005...

input2

main.m
more.m

input

data.m
params.m

output

results.mat

input1

HOST_manager__20050926T190000 (manager log)

HOST_manager__20050926T190000.mat (manager log)

Appendix B: An Example

We consider an example of an analysis using Distributed Matlab to demonstrate the process of
parallelizing code. We assume that the network has already been prepared as described in
‘Setting up the Network’ above and focus on the Matlab code.

Original program
Suppose that we have measured N two-dimensional data points in an experiment and repeated
this experiment M times. The resulting data is stored in two N x M matrices, xpts and ypts.
We simulate this data by calling

 N = 500; % number of points

M = 50; % number of experiments
 xpts = randn(N,M); % generate data

ypts = randn(N,M);

We are interested in calculating the mean distance over all pairs of points in a given experiment
and then repeating this for all experiments. This can be done with the following short program:

mean_distances = zeros(1,M);

 for xprmt = 1:M % for each experiment, …
 for j = 1:N % … loop through all pairs of points
 for k = (j+1):N
 distance = norm([xpts(j,xprmt),ypts(j,xprmt))] – …
 [xpts(k,xprmt),ypts(k,xprmt)]);
 mean_distances(xprmt) = mean_distances(xprmt) + distance;

 end
 end
end
mean_distances = mean_distances ./ ((N*N-1)/2); % normalize

We can then look at the distribution of mean distances using

figure; plot(mean_distances);

This code can be found in the file meandistance.m in the distributed_matlab_example
subdirectory of the Distributed Matlab directory.

Parallelized program
To parallelize the meandistance program, we break the above code into three functions:
generate input data sets, process a single input data set and collect output data sets. The code
for two of these functions (generate_data and collect_results) can be found in the
distributed_matlab_example subdirectory of the Distributed Matlab directory. The code
to process a single input data set (parallel_meandistance.m) can be found in the
distributed_matlab_example\source subdirectory of the Distributed Matlab directory

The function generate_data below creates input directories to split the data into three pieces:

%% Generate Data
N = 500; % number of points
M = 50; % number of experiments
xpts = randn(N,M); % generate data
ypts = randn(N,M);

%% Create input data directories
projectdir = fileparts(mfilename('fullpath'));
subsets = {[1:20],[21:40],[41:55]}; % split up experiments
for c = 1:length(subsets)

 % select a piece of data
 xdata = xpts(:,subsets{c});

 ydata = ypts(:,subsets{c});

 % make an input directory
 inputdir = ['\input' num2str(c)];
 mkdir(projectdir, inputdir);
 % save subset of xpts/ypts to the input directory
 save([projectdir inputdir '\data.mat'], 'xdata', 'ydata');

end

Here, subsets of the data are chosen in advance and a directory is created for each. The data file
(data.mat) and data variable names are the same ('xdata', 'ydata') in each input directory.

The analysis code is untouched except for loading data from and saving results to the appropriate
directories. The function parallel_meandistance includes these steps:

%% Load data from input directory
load('input\data.mat');
xpts = xdata; ypts = ydata; % rename data to match original name
N = size(xpts,1); M = size(xpts,2); % get data parameters

%% Calculate Distances
mean_distances = zeros(1,M);
for xprmt = 1:M % for each experiment, ...
 for j = 1:N % ... loop through all pairs of points
 for k = (j+1):N

 distance = norm([xpts(j,xprmt),ypts(j,xprmt))] – …
[xpts(k,xprmt),ypts(k,xprmt)]);

 mean_distances(xprmt) = mean_distances(xprmt) + distance;
 end
 end
end
mean_distances = mean_distances ./ ((N*N-1)/2); % normalize

matlabversion = ver('matlab');
if (str2num(matlabversion.Version(1)) > 6)
 save('output\result', 'mean_distances', '-v6');
else
 save('output\result', 'mean_distances');
end

The closing if statement is needed when the manager is running Matlab 6.5 and at least one
workstation is running Matlab 7.0. This code forces Matlab 7.0 to save data in a format that can
be read by Matlab 6.5.

Finally, the results of these calculations need to be assembled before they are plotted. This is
done in collect_results:

%% Collect Data
sessiondir = [fileparts(mfilename('fullpath')) '\' session_name];
results = [];
for c = 1:length(subsets)
 % get results from output directory
 outputdir = ['\output' num2str(c)];
 load([sessiondir outputdir '\result.mat']);

 % collect output data set
 results = [results mean_distances];
end
mean_distances = results; % rename to original name

%% Display Results
figure; plot(mean_distances);

As in the generate_data function above, the main issue here is to get the output directory
names correct. The data are then assembled and give the same plot as the original code.

In the example above, 50 experiments were split into 3 pieces as a demonstration. However,
with these parameters, the computation per input data set is small enough that the ratio of
Distributed Matlab overhead to computation time is large. Thus meandistance.m will likely
run faster on one computer than parallel_meandistance.m on three workstations. The
same example with a larger amount of data and more computers (e.g., 400 experiments, 2000
data points, 5 workstations) can be tried to better demonstrate the computational advantage of
parallelizing the code.

Appendix C: Glossary

input data set The set of input files that distinguishes one subproblem from another. See user code.
manager The computer that runs the Distributed Matlab GUI and assigns input data sets to

workstations.
network file A file containing login information for all computers to be used by Distributed Matlab.
output data set The set of output files that are the result of computing one subproblem. See user code.
project directory The directory containing the user code and input data sets. This directory will also

contain the session directory and session log files after Distributed Matlab starts.
session directory The directory that will contain output data sets as they are completed.
session name The name used to identify a particular Distributed Matlab session, in the format:
 HOST_hostname__START_YYYYMMDDTHHMMSS
user code Matlab code that processes an input data set. The user code should be able to run on any

of the input data sets to produce an output data set.
workstation A computer used for Distributed Matlab computation. These computers are assigned

input data sets by the manager.

